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SUMMARY

PROBLEM

Previous reclamation tests of the removal of fallout simulant by
firehosing still left several aregs requiring further study. First, the
latest tests on asphalt streets (in 1963) were not conducted at a large
enough scale to either reveal certaln importaut operational effects or
to provide exposwrc-rate history data for deriving RN, factors. Second,
results from earlier tests indicated that the NRDL exPerimental flare
nozzle showed considerable promise Tor the reclamation of paved. surfaces
- as well as roofs. However, data from preliminary test runs on pave-
ment were exXtremely limited and sketchy. Third, all meaningful roof
data had been obtained from only two types of surfaces - tar and gravel
ond composition shingles. A need existed for studying other materials
and for measuring the effects of simulant particle size on firehosing
removal effectiveness. 1In order to meet these requirements s three
phase experimental operation was initiated.

FINDINGS

Three separate cxperiments were performed al differenfmﬁcales of
operation. In all cases, sand tagged with radionuclide La was
dispersed over the test surfaces to simulate fallout condditions. The
scope of the Lest iz tabulated below in terms of the mass loadings used.,

]
Scale of Test  Test Surface Nozzle Nominal Mass Loading (g/;(‘t;“)
Type Particle Size Range
SC-1T7 1 300-600 p
Engincering Pavenment Flare 5,25, & 100 5 & 25
Full Pavement Fire 25 & 100 5 & 25
Limited Roofs Flare 12,25,50, & 100 5& 25
Bngineering and
Fire 12,25,50, & 100 5 & 25
il



The findings are as {ollows:

In general, it may be concluded for both asphelt pavements and
roofing materials that:

1. BEffectivencss of reclamatlon by firehosing improves as surface
roughness decreases.

2. Larger (300~000 ;1) particle sizes are more easily removed than
the smaller (88-177 ) pvarticle sizes.

3, Removal effectiveness improves with effort, but the residual
mese is not significantly reduced after the second pass.

L, The elfect of mass loading upon firehosing effectiveness is not
predictable because it varies with swrface roughness, particle size and
nozzle design.

puring the engineering-scale tests on asphalt, the flare nozzle
failed to exhibit a reclemation performance that was consilstently
superior to the standard fire nozzle for a significant number of the
combinations of mass loading and particle size tested.

The full-scale tests on asphalt showed that operational factors
prevent the reclamstion effectiveness from ever equaling that achieved
at an engineering scele » no motter how much effort 1s expended. From
the exposwre rate histories it waes found thaet the exposure reduction
factor (RN,) for eithcr the nozzle man or the vehicle oporator 1is not
significantly influenced by pavement surface roughness, fallout
particle size or mass loading.

The roof firehosing tests demonstrated the superiority of the
flare nozzle as o reclamation tool. Filberglass showed great potential
as a durable, easy-to-clean roofing material.

111
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SUMMARY OF RESEARCH REPORT

THREE TESTS OF FIRENHOSING TECHNIQUE AND EQUIPMENT FOR THE RFMOVAL OF
FALLOUT FROM ASPHALT STRENTS AND ROOFING MATERLALS.

USNRDL -TR-10U8, dated 17 January 1966 by L. L. Wiltshire and W. L. Owen.



PURIOSE AND OBJECTIVES

This report describes three aseparate reclamation experiments that
employed firchosing ae the fallout removal wmethod. Two of the five-
hoaing experiments were on aophalt streets and conclude the test series
started in 1963. The third experiment involved the reclamation of roof-
ing materials and is a renewal of earlier investigoations conducted by
thle laboratoiy at San Bruno in 19%2 and again at Camp Stonemon in 1056
and 1958,

The work performed in 1963 studied the effects of fallout particle
slze, moss loadling, effort expended and remeoval rate upon the performance
of firehosing on contaminated asphalt streets. Although complete in
themselves the teats were not condunted at a large enough scale to
either fully observe and docunent operstlional effecte or to obtain the
measurements needed for determining exposure reduction factors ~ RNe
values .

Resulta from teste at Stoneman 11 demonstreted the advantagen of an
experimental flare nozzle which proved to be as effective as the standard
fire nozzle on roofs. More important, the flare nozzle required about
25 % leass water per square foot of roof surface cleaned and was less
fatiguing to manipulate than the fire nozzle. These two advantares
made the flare nozzle worth consldering as a tool. tor the reclamation
of paved areas.

Althouzh n nunber of firchosing tests have been performed on roofsa,
they have been confined largely to only two types of surlace - tar and
gravel and composltion shingles. In addition, theae teats were not
designed to determine the influcncee of particle slzc upon hirchosing
eftectiveness. Thus, knowledge of roof reclamation needed updating in
owder to attain o status comparable to that of pavement reclamation.

In the interest of conserving time and making the most of the
available equipment and supplies, o three-phase experimental operation
was planned. Each rhage wag deglgned to satlsfy one of the aforomentioned
requirements.

The obJectives of Lhe three phases were as follows:

Phase 1. To conduct engineering-scale tests of the NRDI flare
nozzle on asphalt pavement ror comparison with previous tests with
standard fire hozzle.

Phase 2. To observe the operational problems and to record the
exposure rate histories of reclamation crews during the full-scale
firchosing tests on asphalt pavement.



Phage 3. To cumpare the cleaning ellectlivennse ol the fire noznsle
and the flare nozzle on sclected roofing materials at a limited engi-
neering scnle.

The cftf'ectn of mass londing and partlcle size vere studied in
connection with ench of the three phnaes.

SCOPR
The three asparate experiments were conducted ol different scales

of operation, The tcope of Lhe tegta 18 tabulated below in terms »f rhe
masa londing used.

Becale of Teat  Tesl Surface Nozzle Nomlnal Mass Loading (g/rtﬁ)
Type Porticle Size Range
] 88-177 n 300-600
Engineerlng Pavement Flare 5,23, & 100 5 & 25
Ml Pavement Fire 25 & 100 5& 25
Limited Roof's Mare 12,25,50, & 100 5 & 25
Engincering and
Fire 12,25,50, & 100 5 & 2%

The three ncales of experimentation indicated in the tsble are
dafined below:

o, Pneineoring Scale = teabing a porbion of a target suriace that
is less than 2000 Ttd but ustlll large enough to peymlt the realistic
application of lull-sized veciamablion equipment. 1In this case the test
area comprised a short section of strect lncluded between the center
line and one curhb., This permitted divect comwarison with previous
englneering-scale tests.

be Ml Scale - testinz a complete tavget component suiflelently
greater than 2000 ft2 to obtain operational Information including
estimates of wecovery crew cxposurc. The full curb-to-curb width of a
street extending the cquivalent of one city block was used.

c. Limited Bpginecring Seale - bxmllur to Ingincering Scale except
that the test surface is limited to 500 £t or lesg. Only o fraction
of the surfaces or the roof tests was instrumented, since 1t was not
feasible to construct entire voof sections of cach material tested.




FINDING:H

In comporing the effects of nossle docien on firchosins of nsphalt
pavement, the performance of the "lare noz:le surpassed thal of the flre
nozzle In tho removal of the smaller slzed particles (#d-117 n) and then
only at mass loadlngs slgniflicantly lees than 100 g¢/rL*. Fov the ro-
maining test conditions of thia phase, the iire nozzle was coqual or
superior to the f{lare nozzle.

Dosa rabe historles of the rull scale Lests on an asphalt slreoy
revealed that the oxposwre reduction factors (1N, values) were 0.20 Lo
0.27 for nozzle men and 0.07 to 0.11 for the tow truck driver, when
restrlcted to a conglderabion of just the radiatlon contributed by the
contaminated streat,

The superiorlty of the flare nozele over the flire noizle in clean-
ing roofs was exhibited on all the materials tested. Isolated exeep
tions occurred, howaver, when encountering mass loadings of 100 g/ eL" or
particle sizes of 300-600 lb. This reflected Lhe trend neted carller in
the results of the tesis on asphalt.

CONCLUSIONG

In @eneral, it may be concluded for both asphalt pavemente and
roofing materlals that:

1. BEllcectiveness of reclamation by firchosing Lmproves as surfnce
roughness docreases.,

2. Lavger (300=00Q i) partlele sizes wre wmore casily cwemeved Lhan

the smaller (88-177 n) particle sizos.

3. Removal ceff¢cltiveness improves with cffore, vut the cesldual
maGs is not sipnificantly reduccd after the sccond pass.

b, The effect of mass loadlng upon firchosing cffectlveness s not
predlctable because Lt varies wlth swrfoace rouglmess, partlcle size and
nozzle design.

During the engineeving-scale tests on asphalt, Lhe Flare neszle
falled to exhibit a reclamation performance that was consianlently
superlor Lo the stoendard fire nowsle for e sipnificant number of the
combinatlons of mass loading and particle sive lested.

The full-scale tests on asphbull shoved that op2rational factors
prevent the reclomation clffectlveness from ever cqualing that achicevea
ab an enele reving scale - no mabter how much 2ffort s cxpended.
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SECTION I

INTRODUC''ION

T'his report describes three separate reclamation experiments that
employed firehosing was the fallout removal method. Two of the fire-
hosing experimcngs vere on asphalt strects and conclude the test series
started in 1963." The third experiment involved the reclamation of
roofing materials and 1a a renewal of earlier investigations conducted
by this laboratory at San Bruno in 19521 and again at Camp Stoneman in
1956 and 1958,3

1.1 BACKGROUND AND HISTORY

The work performed in 1963™ studied the effects of fallout particle
size, mass loading, effort expended, and removal rate upon the per-
formance of firehosingg on contaminated asphalt streets. The tests
were conducted at an englneering scale; i.e., the test surface was
limited to a short section of street included between the center line
and one curb. Although complete in themselves, these tests did not
reveal *he adverse operational erfects™ that could accompany a full-
scale test perfommed from curb to curb and 200 or 300 £t down the
length of a typical street. Because of the limited scale, it was not
possible to obtain data necessary for deriving exposure reduction
factors (RNp values) for the firehosing team.

* The results of the 1963 firechosing test series are to be reported in
a forthcoming USNRDL TR by the authors entitled "Removal of Simulated
Fallout From Asphalt Streets by Firvehosing Techniques.”

##Increased surface area can lead to excessive build-up of accumulated
contaminant (see Section 2.5.1 b). Increases in the number of recla-
mation personnel usually reduce operational efficiency.
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Results from tegts at Stoneman II3 demonstrated the advantages of
an experimentel flare nozzle used in {irehoging roofs. Thls nozzle
provided a flat, fan-shaped stream which was ideal for working at close
range. Tt proved to be as effective ag the standard fire nouzle.

More important, the flare nozzle required about 25 % less water per
square oot of root' surface cleaned and was less fatiguing to ma-
nipulate than the fire nozzle., These two advantages made the flare
nozzle worth considering as a tool for the reclomation of paved
areas.

Although a number of fire. “~ -g tests have been perfomed on roofs,
they have been confined largely .o only two types of surface - tar and
gravel and composition shingles. In addition, these tests were not
designed to detemmine the influence of particle size upon firehosing
effectiveness, Thua, knowledge of roof reclamation needed updating in
order to attain a status comparable to that of pavement reclamation.

L

In the interest of counserving time and making the most of the
available equipment and supplies, a three-phase experimental operation
vas planned. Each phase was designed to satisfy one of the afore-
nentioned requirements.

l.2 OBJECTIVES

The obJjectives of the three phases were as follows:

Fhase 1. To conduct engineering~scale tests of the NRDL flare
nozzle on asphalt pavement for comparison with previous tests with a
standaxd fire nozzle.

Phase 2. To observe the operational problems and to record the
exposure rate histories of reclamation crews during the full-scale
firehosing tests on asphalt pavement.

Phase 3. To compare the clearing effectiveness of the fire
nozzle and the flare nozzle on gelected roofing materials at a limited
engincering scale.

The effects of mass loading and particle size were studied in
1 connection with cach of the three phases.

jav]
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1,3 FEXPERIMENTAL APPROACH AND SCOPE

The three separate experiments were conducted at different scales
of operation. The scope of the tests 1s shown in Table 1.1, in terms
of the mass loading used.

TABLE 1.1

Basic Condlitions of Tests

Test Nozzle Nominal Mass Ioading (g/fte)
Seale of Test Surface Type Particle Size Range
88-177 300-600 p
Engineering Pavement; Flara 5,25, & 100 5& 25
Full Pavement Fire 25 & 100 5& 25
Limited Engin- Roofs Flare 12,25,50, & 100 5 & 25
eering and
Fire 12,25,50, & 100 © & 2§

The three scales of experimentation indicated in Table 1.1 are
defined below:

a. Engineering Scale - testing a portion of a target surface that
is less than 2000 fte but still large enough to permit the realistic
application of full-sized reclamation equipment. In this case the test
area comprised a short section of street included between the center
line and one curb. This permitted direct comparison with previous
engineering-scale tests.

b. Full Scale = testing a complete target component sufficiently
greater than 2000 ft2 to obtain operational information including esti-
mates of recovery crew exposure. The full curb-to~-curb width of a
street extending the equivalent of one city block was used.

¢. limited Engineering Scale - similar to Eugineering Scale
except thatl the test surface is limited to 500 £t or less. Only a
fraction of the surfaces for the roof tests was instrumented, since it
was not feasible to construct entire roof sections of each material
tested. (The roof mock-up used is described in Section II.)




8ix of the mess loading and particle size combinetlons shown in
Table 1.1 are within the range of values conalstent with Miller's cone
capt of a fallout scaling sy‘st«am.h Radiolegical ¢onditlons correspond=
ing to these combinations are given in the following table. These
standard exposure rates, weapon ylelds, and downwind dlstances were
derived from the work of Clark and Cobbin (Ref. 5, App. C), which, in
turn, was an extension of Millerts fallout model.

Particle Exposure Rate at One Hour (r/nr) Kiloton  Miles
Size ) 2 Yield Down-
Renge Nominal Mass Loadings (g/ft°) wind
(w) 5 12 2l 50 100

88-1717 X - 12,000  (25,000) (50,000) 25,000 90

300-600 T00  (1,700) (3,400} X X 100 12

Note: Exposure rates shown in parentheses are the result of muitiple
bursts.

The remaining three combinations, indiceted by the X's in the a ove
table, were not derived from Millerts model. They were added arbitra~-
1ly to take advantage of open spaces in the weekly schedule.
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SFCTION IT

EXPERIMENTAL PREPARATION AND PROCEDURES

2.1 DESCRIPTION OF TEST SITES

Different test sites vere used for each test. The flare nozzle
vae proof-tested on the test strip used in previous firehosing tests,
which were of enginecering scale. In these tests only the asphalt half
of the test strip, from the center line to one curb, was uwsed. The
surface was asphaltic concrete, which had an even, coarse=-grained tex-
ture. The asphalt test section was 14 £t wide and 95 £t long.

The full-scale test on the reclamation of asphalt pavement by
firehosing was conducted on a section of street 32 ft wide and 280 ft
long. The full width of the street was used from curb to curb. Three-
quartera (24 £t) of the street width along one curb was smoothly texs
tured, but the remaining quarter (8 £t along the other curb) was

coarse-textured for the entire length of the test section.

The limited engineering-scale tegts of the fire and {lare nozzles
on roofing materials used the roof mock-up shown in Fig. 2.1. This
mock-up consisted of a plane 12 ft deep and 16 ft wide, with a slope
of 3.5 in./ft. Ak X 8-ft recess for the various test panels of roof-
ing materials was centered longitudinally in the plane. The surface
swrrounding the test panel opening was covered with fiberglass in
which coarse sand was imbedded to meke a safc walkway for test person-
nel. Sixteen panels (b X 8§ ft) were employed to test the following
roofing materials: fiberglass, asphaltum, corrugated retal, and compo-
sition shingle.

The fiberglass surface was made by imbedding a single layer of
glass fabric in an epoxy resin which formed o permanent bond with the
plywood panel. Asphaltum test panels were made by troweliing Lay Kold
Walk-top (& mineral-filled, fibrous, bltuminous composition) onto ply-
wood. The corrugated metal sheet and the heavy-weight square-tabbed
composition shingles were applied to the panels with naila ln the con-
ventional manner.



Fg. 2.1 Roof Mock-up Showing b x 8-t ponel
Composition Shingles in Place for Testing.,

u,‘l‘-l'
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2.2 FIREHOSING EQUIPMENT

WO types of nozzie were ured i1 these tesie. Tt standard
tapered fire nozzle (1-1/2 in., with a 5/6-in. tore) formed a slander
cone-shaped stremn of waler al udzsle pressures of 60 and 79 pei. The
experimental NRDL flare nozzic {1 in., with an 21liptical orifice
3/8 X 9/16 in., Mg. 2.2} delivered a flat, fan-shaped stream ol water
at nozzle pressures of 120 apnd i(0 psi.

In these tests the noziles were alvays used with standard firehos-
ing equipnent. A five pump jnserted lnve the system at the fire hyd-
rant delivered water tnrcagh a £-1/2-1in. fire hose to 2 wye-gate ab the
test area. WOr the engireering and liwd%ed-engluzering scole teats,
one branch of the wye gate supplied water o the nozzle through e
1-1/2-in. fire hose. A by-pass hose connected to the remaining branch
and velve assembly at the wye-gate ware used t6 adjuet Lhe nozzle pres-
sure and flow rate. Ior the full scale tests, each branch of the wye
gate supplied water to a 1l-1/7 In. fire hese. and adjustments to pres-
sure and flow were made at the pump.

The folloving hLable sumiarizes ta: values of the hydrodynamic
parameters characterizing the ©3o nozzles.

S i VRLI AT =wear

Nozzie Test Noz:ie Nozzie Nozzle Flaw
Type Surtace pifyea Pressaxe Thrust Rate

(tn.) (pei) (1e) {gpm)

Standard  Pavemen'. 5/8 (&) k6 106

Fire Ronfa 5/8 & 37 89

WBDL Poviment 38 N 9736 160 b6 ¢

Flare Roots 35 x u/ab 120 36 &




Fig. 2.2 NRDL Experimental Flare Nozzle, Showing
Recessed Ellintical Orifice.
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2.3 SIMUIANT PRODUCTION AND DISPERSAL

The fallout simulant and dispersing equipment were of the type
used in the 1963 tests at Camp Parks (see footnoctes on page 1). These
tests used fallout simulant in two particle size ranges (88-177 u and
300-600 p). The simlant was sieved from commercial sand, tagged with
the radionuclide Lal¥0, and sealed against leaching. For further in-
formation on the development of the fallout simulants see Ref. 6.

Uniform mass loadings on all surfaces were achieved by dispersing
the simulant over a known aree with a calibrated, hand-operated lawn
spreader. The average mass loading per square foot was calculated
from the actual weight of simulant used in each test.

2.4 RADIATION INSTRUMENTATION

The principal instrument for measuring residual mass loading was
the mobile, shielded and collimated gamma-detector. This field instru-
ment emploves & sodium iodide scintillation crystal, coupled to a
photomultiplier tube within a thick lead shield. The detector's physi-
! cal characteristics are:

a, Crystal - 1 X 1 in. cylinder approximately 1 meter above the

surface.

b. lead shield ~ 4 in., thick with a collimated l-in. diameter
aperature.

o F&elﬁ of view - subtended by a cone having an included angle
of 149.

i The standard AN/PDR-27F radiac was used for back-up swveys in

: case of malfunctioning of the mobile gamma-detector. The radiac also
; vwas used to coliect the exposure rate history data of the recovery

: CYews. .

The 4-pi ionization chamber, a stationary laboratory instrument,
was used for simulant production control. Details of this and the
above instruments are to be found in Ref. T.

Nﬁj




2.5 TEST PROCEDURES

2.5.1 General Sequence of Operation :

A typical test was carried out in the following sequence. ‘The
test area (whether pavement or roof) was thoroughly flushed of all
residue from previous tests and then allowed to dry. The residuzit
background radiation level was measured. Fallout simulant at a selec-
ted mass loading and particle size range was dispersed over the test
area and initial radiation measurements were made. The firehosing
operation was performed as detailed later in this section, and the re-~
sidual radiation was measured. These radiation measurements were re-
peated after each additional firehosing pass. All surveys of asphalt

. test areas were made with the two kinds of detectors, the shielded
detector and the radiac at the survey stations shown in Figs. 2.3 and
2.4, Roof surfaces were surveyed with the shielded detector only at
two stations, one in each half of the test panel.

2.5.2 Firehosing Pavement

The previously proven frontal-sweeping hosing tecbniqué*was
employed during both phases of the experiments on asphalt paving.
Starting at ¢ne end of the test strip fire nozzles were played btack
and forth between the side lines as the firehosing team moved toward .
the other end. Each test consisted of two or three passes. The visu-
ally controlled rate of firehosing was used in these tests. In other
words, forward progress was governed by the rate at which the loosened

fallout simultant appeared t0 move down course ahead of the water stream.

a. Testing the Flare Nozzle

These tests were performed at an engineering scale on the
asphalt test strip. The frontal-sweeping firehosing technique vas used.
The filare nozzle was operated at a nozzle pressure of 160 psi, from a
height of 40 in. and at specified ranges in the interval 5 to 15 ft.

b. FMil-Scale Firehosing Tests

The full-scale reclamation of an asphalt street by firehosing,
with a standard fire nozzle, was an extension of the 1963 engineering-
b scale tests. The basic frontal-sweeping technique mentioned above was
3 usad. The fire nozzle was operated at a nozzle pressure of 75 psi,
from a height of 4O in. and at ranges of 20 to 25 ft. Tor the full
width street a two-nozzle double-crew procedure was employed., Two

* Described in reference given in footnote on page 1,

10
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NROL-329-66
STATIONS 1-9 AND N-19 ON 10 FT CENTERS
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(3 ’ 41211 “.. lo‘
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Fig. 2.3 Layout of Asphalt Test Area for Engineering-Scale Tests
of Flare Nozzle, Showing Survey Stations.

STATIONS 1-14 AND 21-34 ON 20 FT CENTERS

NORTH CURB LINE DOWN SLOPE

x
&

a-15 8'
o 022 320 % 34
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CENTER LINE OF STREET A ) '
e 3
t.,_ 2 3 I 13 14
Q O (0] O O
6 ‘*15‘ o
. SOUTH CURB LINE
- 280"

Fig. 2.4 Layout of Asphalt Test Area for Full-Scale Test of Fire
Nozzle, Showing Survey Stations.
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firehosing teams advanced side by side down the street, cleaning it at
the visually controlled rate. A pickeup truck towed the wye-gate and
heavy 2-1/2-in. firchose to reduce the number of men required to support
the nozzle operators, Fig. 2.5. Three firchosing passes were made in
each test. The exposure rate histories of the crew members were collec-
ted with radiacs during the first pass only.

When a mass loading of 100 g/i’t‘f2 was spread, the increased weight
of simulant called for a change in firehosing procedure. Because of
the accelerated mass bulld-up of simulant in front of the water streams,
the cleaning rate would have been drastically reduced during the latter
helf of the first pass., Therefore, the firehosing teams deposlited the
contaminant collected from the first half of the test strip at a point
near one curb and midway between the ends of the test strip (see Fig.
2.6). The team then continued hosing the remaining half and pushed the
resultant accumilation off the end of the strip. These deposits were
shoveled into an end loader and removed to the waste pit prior to the
second and third firehosing pass. The latter were performed in the
usual manneyr described earlier in this section.

2.5.3 Firehosing Roofing Materials

The firehosing procedure for roofs was & little different from
that for pavements. Iower nozzle pressures (fire nozzle, 60 psi; and
flare nozzle, 120 psi) were used for the safety of the nozzleman.
Shorter stream ranges were used for the fire nozzle. The test procedure
sequence was as follows:

a. The roof mock-up (test plane and roof panel) was flushed of
all residue from previous tests and allowed to dry.

b. The test panel was placed under the shielded detector and
the residual background radiation level of the panel was measured. Two
l-min counts were made on each half of the test panel.

¢. The panel was repositioned in the roof plane recess and the
eitire surface was contaminated with a selected mass loading and particle
slze range.

d. The panel was carefully removed, counted under the shielded
detector, and repositioned in the test roof plane.

e. The roof panel and plane assenbly were firehosed irom the
peak to the eaves at the visuwally controlled rate.

f. The panel was removed, counted, and repositioned for the

! next firehosing pass.

Usually three firehosing passes were made., During firehosing
operations, only one man (the nozzle operator) was required on the roof.
The rest of the team stood by to regulate the water pressure and to
handle and survey the test panel.

_*




Fig. 2.5 Full-Scale Firehosing - Double Crew Procedure,
Utilizing Vehicle for Dragging Heavy 2-1/2-in. Firehose.




Fig. 2.6 Collection of Displaced Simulant Near Méd
Point of Curb During the lst Pass of the 100 g/ft
Mass Loading Test.




2.5.4 Procedure

Radiation measurements were taken periodically during all test
runs to determine background radiation level, initial radiation level,
and the residual radiation level after each hosing pass. The mobile
detector routine for each instrument pass was as follows:

a. Instrument response was detemined by counting a 0060 radi-
ation standard in a low background area.

b. At each survey station two l-min counts were made and recorded.

¢+ The instrument was again checked with the Co™V standard.

The routine for the 27-F radiac was much simpler. The radiac
response was checked with a Co™ gtandard before and after each day'e
tests. The measurenents at each survey station were made at 1 meter
above the surface.

Time and motion studies were made to obtain cleaning rate,
efforty, and exposure rate histories for all four full scale recovery
tests. ‘The exposure rate histories of the two nozzlemen and the tow
operator were obtained during the first firehosing pass of each test
(see Fgs. 3.5-3.8). Exposure rates were teken with a 27-F radiac at
one meter above the street surface near the nozzlemen and inside the
cab at seat level near the tow truck operator. The measurements were
made every 30 to € sec., and the times were recorded to complete the
history.

15



SECTTON III

RESULIS AND DISCUSSION

The reduced data from all of the firehosing performance tests
are presented in sixteen self=-explanatory tables in Apvendix A. This
information has been condensed from raw data obtained by the shielded
gamma-detectoxr surveys and the time and motion studies. The test ree
sults are best portrayed by the reclamation performance curves plotted
directly from the tabular data. Tt should be pointed out that while
data points are connected by stralght lines this does not necessarily
indicate the path between any two successive points.

3.1 TESTING THE FLARE NOZZIE ON ASPHALT PAVEMENT

In order to compare performances, the flare nozzle was tested
against all the same combinations of particle size and mass loading
previously used with the fire nozzle. The reduced test data are come
piled in Table A.l. Table A.2 contains results from the 1963 tests
(referred to ou page 1) for the 1-1/2=1ne fire nozzle on asphalt pave-
ment. Mgurea 3.1 and 3.2 contain ten performance curves grouped
according to particle size range. They show the residual mess, M, as
a function of effort, E, for each test,

A comparison of the current tests with the 1963 results shows that
for particle size range 88.177 1 the flare nozzle wag more effective
than the fire nozzle at mass loadings less than 100 g/ft%. For the
same particle size range the fire nozzle was more effective against the
heavier mass loading of 100 g/ft2. At the larger varticle size range
of 300600 u the fire nozzle was superiog against the S-g/ft2 mass load-
ing, but its performance against 25 g/ft= was indietinguishable from
that of the flare nozzle.

According to the converging behavior of the solid curves in Fig.
3.1, mass loading has little effect on the performance of the fire

16
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nozzle when particle size is small. The curves for the flare nozzle
indicate that, in general, high resldual mass is associated with high
initial mass loading, although curvec for the 5 and 25 g/ft2 mase load-
ings converge. According to Mg. 3.2 this also appears to be the case
for both nozzles when particle size is large. Comparing the fire nozzle
curves of' Mg, 3.1 and 3.2 it is also apparent that, for mass loadings
less than 100 fg/ft2 s the fire nozzle removes the larger particles more
readily than the smaller ones. In the case of the flare nozzle, the
influence of particle alze 1s not nsarly so evident.

3.2 FULL~SCALE RECOVERY OF ASFHALT PAVEMENT BY FIREHOSING

Four firehosing tests were conducted at full scale to determine
the influence of operational factors on removal effectlveness snd to
obtain exposure-rate histories of hosing crewa.

3.2.) Removal Effectiveness

The reduced test data are dompiled in Tables A.3 and A.% for
smooth and rough surfaces, respectively. They are plotted in elght
performance curves (Figs. 3.3 and 3.4) of residual mass, M, versus
effort, E, for each test.

Both thegse familles of curves are quite similar in that each
reflects the finding noted above for mass loading effecta. That isa,
mass loading influences fire nozzle performance ouly when particle size
is large. It is immediately obvious, from compaving the two famiilea
of curves, that the smoothly textured asphalv is cleaned more effec.
tively than the roughexr surface. A comparison of the residual fractions
in Tables A.3 and A4 shows that these relative effectivenessesa differ
by factors of 2 or 3. The onickly decreasing slope in all the curves
indicatea that any gain in effectiveness after two passes do=3 not
warrant the added efrort.

The relative location of the two palrs of curves platted for a
mass loading of 25 g/fte shows that the larger particies are more
easily removed than the smaller ones., This coincides with resulte of
previous wet method tests inciluding firehosing and street flushing.

Probably the most important finding of these tests 1s disclosged
when the engineering-scale and full-scale performonces of the fire
nozzle are compared for asphalt pavement having rough textured surfaces.

17
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This is possible by noting the relative location of the fire nozzle
curves in Figs. 3.1, 3.2 and 3.4, Such a comparison shows that, in
genersl, the reclamation effectiveness at an engineering scele is an
order of maghitude better than that achieved at full scale. In other
words, the introduction of more reeiistic conditions involving increased
equipment and operators prevents the effectiveness of full-scale tests
from equalling that of smaller engineering-scale tests - no matter how
much effort 15 invested. This points up the need for either extending
reclamation utudies to include full-scale tests of a number of methods
and equipment not yet tested beyond the engineering scale or estimating
the decreased effectiveness expected of full-gcale reclamation.

3.2.2 Recovery Exposure

The planning of recovery operations requires estimating the ex-
posure which recovery crews are expected to receive. These full-scale
tests afforded an opportunity to estimate the exposure to firehosing
teams and derive exposure reduction factors.

Exposure RHeduction Factor, RNo. A suitable formula for calcula-
ting recovery crew exposure has been evailable for some time.* It is
given in the simple form

D) = RN, D, (1)

where Dé 1s the actual recovery crew expcsure,
Do is the potential exposure during the reclamation period, if
the original field were unaffected by the reclasmation effort.
RNy is the exposure reduction factor.

By rearranging terms, a convenient working equation can be writ%en
which shows how RNo values are estimated from experimental results.

BN, = == = —TE (2)

the product Ifﬁtj represents the area of san incremental strip under an

operator exposure-rate history cwrve (refer to Fig. 3.5). I, is the
o avergge initial exposure rate in the contaminated area, and t is the
% total time of the recovery operstion., Experimental vaiues of I, are

*The derivation is given in Ref, 9. Experimental applliecations are
shown in Refs. 6 and T.
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obtained from survey readings taken along: the path a glven operator is
expected to take through the contaminated area. When this path cannot
be reasonable predicied, I, ies calculated from a grid survey of the
complete area. In the case of firehosing 1lsolated areas (as in thege
full scale testsy), team members will never be subJjected to I,. The
bulk of the fallout simulant continuocusly recedes along a front located
20 to 30 ft away from the nozzle operator. Therefore, the firehosing
team is never exposed to a radiation dose rate equal to I,. In a real
fallout situstion, nowever; the contributions from contaeminated sur-
roundings could offset any gains resulting from the reduction of an I,
in an isolated area due to firehosing (or any other method). Refs. k4,
6 and 9 treat these more complex radiological situations in considerable
detail.

Exposure Rate History. In order to obtain values for the numerator
of Eg. 2, exposure rate histories were taken of all four fullscale fire-
hosing tests. Freduent measurements were made of the changing gamma
exposure rate with 27~F radiacs close to each nozzleman and the tow truck
operator during the 10-to-14 min tim2 interval. These exposure rate
history plots are presented in Figs. 3.5 through 3.8, and the results
are summarized in Table 3.1.

Teble 3.1 1s a sclution to Eq. 2 in texrms of RN, values for the
various starting conditions and tasks. Comparing the results associated
with the nozzlemen, the RN, values identified with the rough and smooth
surfaces differ by an amoufit ranging from 9 to 23 %. However, there are
no apparent trends in the RN, value attributable to surface texture.
Furthermore, neither particlé size range nor mass loading has any marked
effect upon the magnitude of the exposure reduction factor for either
the nozzleman or the tow truck operator.

Each set of exposure rete history curves in Fig. 3.5, 3.6 and 3.7
exhibit the same characteristic shapes and relative orientation among
the curves. Fig. 3.8 shows a severe departure from this pettern as
evidenced in the sharp peaks in all three history curves. These in-
creases 1ln exposure rate are due to the heavy accumulation of simulant
deposited midway through the test es explained in Sectlon 2.5.2b. Thus,
heavy mese loedirgs (such as the 100 g/ft° concentration) can be ex-
pected to cause peaks in exposure rate histories.

This does not necessarily imply that resulrant R, factors will
increase. For the test in question RN, factors for the nozzlemen are
near the average values shown at the boltom of Table 3.1. On the other
hand the RN, value for the tow truck operator is the largest smong the
four tests ~(30% greater than the average). Due to vehiculsr shielding,
RN? values tor tow truck operators are 1/4 to 1/2 that of the nozzlemen.
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one being reclaimed would continue to contribute to the c¢rew exposure
until the entire recovery operation was . .completed.

3.3 FIREHOSING OF ROOFING MATERIALS

These tests compare the reclamation effectiveness of the fire and
flaxe nozzles on the following roofing materials: composition shingle,
corrugated metal, fiberglass, and asphaltum. The reduced data are com-
piled in Tables A.5-A.16 and are plotted as performance curves in Figs.
3.9-3.26, showing residual mass as a function of effort.

3.3.1 Effects of Nozzle Design and Roofing Material

The effects of nozzle design and roofing material on reclamation
by firehosing are shown in Figs. 3.9-3.16 for particle size range 88-
177 pe Pigures 3,17-3.20 show these same effects for particle size
renge 300-600 p. Generally, the curves were consistently paired accord-
ing to nozzle design with the flare nozzle being more effective than
the fire nozzle. Two exceptions occur in Figs. 3,16 and 3.20 for cor-
rugated metal where the difference in performance due to nozzle design
is not significant.

From the consistent spacing between the sppropriate curves from
each pair of flgures it is obvious that removal effectiveness is a
direct tunction of surface roughness. Therefore the rooi’ing materials
may be ranked in order of decreasing effectiveness according to their
increasing surface roughness: (1) fiberglass, (2) asphaltum, (3) cor-
rugated metal, and (4) composition shingle. An exception to this rank-
ing is depicted in Fig. 3.1" when fiberglass appeared to be no better
than composition shingle. Nowever, it was discovered that the panel
used in this test was not completely cured. As o result some simulant
became pexrmanently imbedded in the epoxy layer softened by the heat of
the sun. This would not have happened if the epoxy had been mixed in
the correct proportions.

The adhesion of the asphaltum to the smouth plywood surface was
so poor that the force of the fire nozzle stream eventually ruined the
panels. This resulted in a loss of some data points - in particular
see odd-numbered Figs. 3.11 through 3.17 inclusive. If this material
would adhere tightly to an unfinished surface it would be almost as
eagy to clean as fiberglass and much easier and more economical to
apply.
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¥t will be noted in Fig. 3.10, 3.1, 3.13, 3.17 and 3.18 that there
are five curves exhibiting a positive slope after the {irst pass. This
reversal in slope occurs only for those combinations of nozzle design and
roofing material that result in maximum removal effectiveness. For this
reason nonc of these curves involve the fire nozzle ox composition
shingles.

Becauge each of the curves in question changes slope at very low
values of residua) mass (0.15 g/ftZ or less) and, hence, at proportion-
ately low counting rates, it is ougpected that the ahiclded detector was
operating in a region approaching its lowexr limit of counting reliability.
The fact that at least four other curves (see Flg. 3.9, 3.12, 3.19 and
3.20), based on data obtained in compareobly low counting regions, cxhibit
negative slopes in no wise weakens such o concluglon. This 1o precisely
the random results to be expected when counting reliability becomas
marginal..

Becauge the slope reversal of the curves might also be ocawced by
the statistical uncertainty in the data pointa, the etandard deviuations
of the reslidual mnsses were estimated for all the curves cited. In five
cases the deviations were large enough to permit a change in slope. That
15t the three ourves in Flgs. 3.10, 3.1l and 3.17 could have been nega~
tive, and the two it Figs. 3.19 and 3.20 positive. However, this docs
not apply to the remaining four curves. The positive clopes of the two
curves in Mg. 3.13 and 3.18, therefore, must be blamed on low counting
reliability.

3.3.2 Mass Loading and Particle Silze Effects

The effects of mess loading end particle size on nozzle perfoms-
ance are illustrated by the performance curves in Mge. 3.21-3.26. These
figures are arranged by surface material and paired to show differences
due to nozzle design.

A cupsory examination of these curves reveals two consistent trends
that are generally true for the three roofing materiels represented.
First, the flare nozzle 13 more effective than the fire nozrle; especially
when encountering the ogaller particle size range (88-177 n) at mass load-
ings legs than 100 g/ft<. Second, performaunce curves for the 88-177 n
size range tend to reach what appears to be a minimum residual level after
three pasges., In most of these cases, the additional effort required is
not Justified by the small decrease in residual mass achieved by the
third pass.

NO general statements can be made concerhing the influence of
particle size upon hosing cffectiveness, since only one mass loading
(25 g/Tt<) was tested for both size ranges. However, for this one value,
all the performance curves from Plg. 3.2) to 3.26 show that the larger
300-600 u particles were more effectively removed by either nozzle.
This is consistent with the findings from the tests on asphalt streets.




The eftfects of mass looading on the firehosing performance varled
according to swiace roughness, particle size and nezzle design. PFor
the larger 300600 p slze range, moss loading showed little influence on
hosing performance, except in two cases. These are evident in IMge. 3.24
and 3.2% lnvolving the flare nozzle on corrugated metol and the fire
nozzle on composition r‘mnglés. The generous separation between paired
curvos shows that the 5 g/i‘t mase loading was consistently cleaned more
effectlvely than the 25 g/Ite miss loading at all hosing passes.

‘fhe varled elfccts of mpss Loading on the small 88-177 p size
range are evident for twe of the tlwee roof materials:

Fiberglegs. In the case of fiberglass, Fig. 3.21 demonstrates
clearly by the superposition of the fire wozzle curves that mass loading
hae no effect on resldual mass. The lack of danta points in Flg. 3.22
does not allow for any related conclusions on the part of flmre nozzla
performance ,

Corrugated Metal.. Flgures 3.23 and 3.24 indicate a definite
correlation between initial and residual mass at the 838-177 p slze
range. The Tilve nozzlo curves (I‘ig, 3.23) pair up so that smell mass
loadinge of 25 g/ft, and less al\em\\'s axhibit lower residual mass values
than do mass loadings of 50 g I‘t and meater. An even stronger relas
tionship between initlal and residual mass is shown in Flg. 3.24 for
the flare nozzle by the sequential spaclng of the perflormaunce curves.

Compogition Shingles. The fire nozzle porformance curves are
shown in FMg. 3.25. For portlele szlze range 88-177 i, the periormance
curves do ngot seem to Tall in a consistent relaltlon to eaci other that can
be explained by the initial masg loading. The mixed relationship of the
curves may be due to depesition of some simulant under the shlhgle tabs.
This is known to happen but only in a non-uniform and highly unpredictable
manner. Mhe flare nozzle cwrves in Fig. 3.26 are arranged in such a way
that no nues J.oucugg effects are evident over the range of initial values
from 12 to 50 g/ft From the relation of the three superimposed cwrves
to the one uppermost in IFig. 3.26, it is 8ppm'ent that residuasl values
associated with mass loadings of 100 ¢/Tt™ wre consistently greater than
for those attvibuted to smaller mass loadings.

Tt should be pointed out that, with few exceptions, all the re-
marks concerning removal. effectiveness have been mass-oriented. That is,
comparisons have been made with respect to residual muss. The latter is
a measure of absolute effectiveness and was best suited to the purposes
of this report. For operating manuals, however, the residual fraction
(F) i1s prefoerr ed. F is the ratio of the residual mass to the initial
mass and, therefore, Is a measwe of yelative effectiveness  This quon-
tity bas becn reported (along with reoidual mass) in the bables of

Appendlx A.
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SECTION 1V

CONCLUSIONS

In general, it may be concluded for both asphalt pavements and
roofing materlals that:

1. Effectiveness of reclamation by flrehosing improves as sur-
face roughness decreases.

2, Llarger (300-600 u) particle sizes are more easily removed
than the smaller (88-177 p) particle sizes.

3. Removal effectiveness improves with effort, but the residual
mass is not significantly reduced after the second pass.

k., fThe effect of mass loading upon firehosing effectiveness is
not predictable because it varies with surface roughness, particle size
and nozzle design.

During the engineering-scale tests on asphalt, the {lare nozzle
failed to exhibit a reclamation performance that was consistently
superior to the standard fire nozzle for & significant number of the
combinations of mass loading and particle size tested.

The full-scale tests c¢n asphalt showed that operational factors
prevent the reclamabion effectliveness from ever equaling that achieved
at an englneering scale - no matter how mich effort is expended. From
the exposure rate histories it was found that the exposuare reduction
factor (RNo) for either the nozzle man or the vehicle operator is
not significantly influenced by pavement surface roughness, fallout
particle size or mass loading.

The roof firechosing tests demonstrated the superiority of the
flare nozzle as a reclamation tool. Fiberglass showed great potential
as a durable, easy-to-clean roofing material.
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SECTION V )

RECOMMENDATIONS

From the results and conclusions obtalned in the series of fire-
hosing tests, the following recommendations are made.

1. Investigate feasibility of manufacture and distribution of
NRDI flare nozzles to recoverable communities and facilities located in
potential fallout aresas.

2. If (1) is feasible, employ the NRDL flare nozzle on roofs and
in confined paved areas where 1t 1s not possible to take advantege of
the long reach of the water stream characteristic of fire nozzles.

3. Conslder the use of smoother surfaces, such as fiberglass-
epoxy, for roofs on vital sctructures that are likely to require recla-
mation soon after beilng contaminated by fallout.

L, Conmduet tests on roofing materials at a iarger and more realiis-
tic scale, or find a suitable method for meking operational adjustments
to the limited-scale test results. Inciude the technique of lobbing
nozzled water streams from giound level as part of these tests.

1y, S,
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APPENDIX A

REDUCED TEST DATA

A1l the foregoing [irehosing performance curves wepre plotted from
the data contained in Tables A.1 through A.16. The average initial
mass loadings shown in these tables were caleculated from the actual

- welght of material dispersed. Initiel radiation and residunl radistion

- values represent the averages of all survey stations for a given test
area, The number of stations for each of the three experiments perfor-
med were: engineexing scale - 18, full scale - 34, and roof panels - 2.
Average counts were normalized to a CofC standard, decayed to an arbit-
rory zero time, and corrected for background. Prom these correcbed
counts and the known moss loading it wos possible to derive the average
residual mass and average residual fraction. For detailed explanation
see Refs T, App. D.

It should be noted that two one-minute counts were teken at each
station to guard against the collection of erronecous readings. The rate
and effort values in the last two columns of the tables were calculatsd

wa nvan [ N, SV I R W O S
from time and mobion studies,

' Standard deviations in the residual mass values ranged Tvom % 1 to
~ 356 percent.  An approximate value of ¥ 1- % may be token as estimated
average deviaticn.
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TABLE A.2

Engineering-Scale Performance Test Results for Fire Nozzle on Rough
Asphalt Pavement (Extracted from 1963 firehosing test results)

— - =t =

Average Pass Average Averoge Rate of Cummlative Effort
Initial No. Resldual Residual Removal B
Mass Mass Fraction

R :
103 g2

M M
(g/%£2) (e/142)

Particle Size Range, 88-177 u

3.76 1 0.63 0.169 L 8h 2.07
2 0.40 0.106 559 3.86

24,2 1 0.56 0.023 418 2.39
2 0.3k 0.014 496 Lok

102.5 1 0.71 0.007 346 2.89
2 0.16 0.001 130 5.21

Particie Size Range, 300-600 u

4,09 1 0.0k 0.009 k62 2.16
2 0.02 0.006 665 3.67

23.4 1 0.26 0.011 451 2.22
2 .08 0.003 5596 3.89

b
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